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Climate change and impact assessments

With the confirmation of global climate change of anthropogenic origins, assessing the
impact of climate change on regional sectors has become an important concern.

Climate change impact assessment is based on nested modeling in which information,
and thus model errors, flows along the model hierarchy.
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A schematic illustration of information flow in assessing climate change impacts on regional sectors

Every climate model data contain biases due to incomplete model formulations as well as
imperfect external forcing information (e.g., future GHG concentrations)

To deal with model errors in climate projection and impact assessments, we usually rely on
bias correction or multi-model ensemble, or both.

Model evaluation is the key step in bias correction and multi-model ensemble.

Systematic evaluations of GCMs have been undertaken for some time (e.g., AMIP, CMIP); this
is not the case for RCMs.




Observational Data in Climate Research and M/ogeling
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Observe &  GCM Evaluation Global RCM Evaluation  Decisions &
Characterize  C-C-Aftribution  proiections & Projection  Investments

Observational data are a key in climate study & model development.
» Detection of climate change signals and attribution of them
 Model evaluation.
e Easy access to high quality observational data facilitates evaluation efforts.

 Remote-sensing at NASA & other institutions can provide fine-scale reference
data suitable for evaluating (future) fine-resolution model simulations.

To facilitate RCM evaluation, especially for easy access to remote
sensing data, RCMES has been developed via joint JPL-UCLA efforts.



Regional Climate Model Evaluation System (RCMES version
(Wma gov)
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Ongoing and near-term applications of RCMES to the CORDEX R}gions

* N. America: Funded via NASA for U.S. NCA (NCAR)
» Africa: Collaboration & analysis ongoing (UCT, SMHI)
» E. Asia: Available RCM data have been downloaded (KMA, APCC)
« South Asia: Ongoing (IITM, SMHI)
» Australia: Ongoing (Univ. of New South Wales)
» Arctic, Middle-East North Africa, Central America, South America: Planning stage
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Multi-RCM evaluation studies have been performed for two CORDEX
domains, Africa and North America (NARCCAP)

CORDEX-Africa: 10-11 RCMs, 20 years (1989-2008)
NARCCAP: 5 - 6 RCMs,24-year (1980-2003).



Multi-RCM Evaluations using RCMES
s
RCM biases in the Africa and North America regions are examined
using the data from the multi-RCM CORDEX hindcast experiments.

RCMES has been utilized to evaluate multi-RCM hindcast data for
the two CORDEX domains.

Monthly-mean hindcast data from multiple RCMs have been
obtain from partnering institutions.

o CORDEX-Africa: SMHI, 10 -11 RCMs for the 20 years (1989-2008)

e NARCCAP: NCAR, 5- 6 RCMs for the 24-year (1980-2003).

o AllRCM data have been pre-interpolated onto a common analysis
domain by the partnering institutions (SMHI and NCAR for the Africa
and N. America, respectively) before transferred to the RCMES team.

Evaluations have been performed for the variables that play
crucial roles in shaping the surface climate

e Precipitation, the daily surface air temperatures, cloudiness, insolation



CORDEX-Africa RCMs and the Analysis Domain
_ /
All RCM data have been pre-interpolated from their native grid nests onto a
regularly spaced at 0.44 degree horizontal resolutions for evaluation and analysis

21 subregions are introduced to examine RCM skill in varied geography

ZS (M): CORDEX-AFRICA @.44DEG

Institution/Model | Pr/Tmin/Tmax

Izooo CNRM/ARPEGES.1

I s  DMI/HIRHAMS5 X X
i ICTP/RegCM3 X X
IES/CCLM4.8 X X
1250
KNMI/RACMO02.2b X X
1000
MPI/REMO X X
I W SMHI/RCA35 X X
I o UCT/PRECIS X X
I 100 UC/WRF3.1.1 X
50 UQA/CRCM5 X X
I ENS 10 RCMs 9 RCMs

o



NARCCAP RCMs and the Analysis Domain
/

* The data from 5 RCMs and their ENS
over the conterminous US region are
evaluated.

* The RCM simulations have been pre-
interpolated from their native grids onto
a common grid nest of 0.5-degree
horizontal resolution by the NCAR team
for analysis, evaluation, and inter-

Model ID Model Name

CRCM Canadian RCM comparison like in the CORDEX-Africa.
ECP2 NCEP Regional Spectral Model

HRM3 Hadley Center RCM3 * Fourteen sub-regions (as shown in the
MM5| MM5 figures and table) are selected to

RCM3 RegCM version3 examine model performances in various
WRFG WRF - run at PNNL regions of interests.

ENS Multi-model Ensemble
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Evaluation of Precipitation
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Large inter-model variations in some regions:

SWUS, East Coast (US); the W. Tropics, W. Sahara (AF)

There also exist systematic regional variations (see circles).

For the NARCCAP domain:

« Wet biases in the Pacific NW

« Dry biases in the Gulf coast and southern Great Plains.
For the Africa domain:

« Wet biases in the Sahel region, South Africa

« Dry biases in the E. Africa and E. Arabia Peninsula



Annual-mean Precipitation: Spatial Variability over the Land Surface
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* All models show more similar performance in simulating spatial patterns;
but, the magnitude of spatial variability (Standardized Deviations) varies
more widely among models than the pattern correlation, especially for US.

«  The multi-model ensemble (ENS) yields smaller RMSE than individual models
included in the multi-model ensemble for both models.

« The multi-model ensemble tends to underestimate the magnitude of
variability.



Precipitation annual cycle — Regional variations
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 Model performance in simulating the precipitation annual cycle also varies according to
regions for both the Africa (above) and NARCCAP (not shown) regions. For Africa,
 All RCMs simulate the observed annual cycle reasonably well, at least its phase.
* RCMs generally perform better for the western Africa than the eastern Africa.

* The interannual variability of wet season rainfall is also better simulated for the western
Sahel than the Ethiopian Highlands.



Precipitation Seasonal Cycle - Regional Summary

(a) Normalized RMSE: PRCP annual cycle 7(b) Correlation with the CRU annual cycle
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 Model performance in simulating the seasonal cycle show strong regional variations
*  Model biases also vary for different metrics (RMSE & Correlation in the above)



Annual-mean Surface Air Temperature Evaluation
in the CORDEX-Africa Experiments



Annual-mean Surface Temperatures OW
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* Three surface air temperatures, the daily mean (72,,¢), maximum (72,,,4), and minimum
(T2,,n), are evaluated against the CRU3.1 data.

* Al RCMs well simulate the land-mean 72, & T2, but most models overestimate T2,

* ForT2,, & T2, the multi-model ensemble (ENS) shows the best performance.
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All RCMs well simulate the spatial variability of the three surface temperatures .

T, Shows the highest pattern correlation (0.9-0.98) with CRU among the three

temperatures.

the other two temperatures show smaller but comparable correlations.

All RCMs perform similarly in simulating the magnitude of the spatial variability for T,
and T,y but their performance varies widely for T, -

For all three temperatures, the multi-model Ensemble (ENS) yields the smallest RMSE
similarly as for precipitation.



Precipitation annual cycle — Regional variations
/

 Model performance in simulating
the daily-mean temperature
annual cycle also varies according
to regions for both the Africa
(above) and NARCCAP (not
shown) regions.

* For Africa, all RCMs perform
better for the extratropical
regions (e.g., Mediterranean
coast, South Africa) than the
inter-tropical regions (R0O9 &
R12).

e Although multi-model ensemble
agrees reasonably with the CRU
data, inter-model variations in
the simulated annual cycle
increases close to the Equator.




Temperature Annual Cycle Evaluation
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Model performonce Ig
simulating the annual
cycle show strong
regional variations.

Considering both RMSE
and Correlation
Coefficient, models
generally perform
better for simulating the
annual cycle in the
exfratropics than in the
fropics.

Model biases also vary
for different metrics.

Similarly as for the over-
land variability, models
generally perform
better for Tyye & Tyax
than Ty



Relationships between the model biases in precipitation,
cloudiness and surface insolation

Can this provide a clue for deficiencies in model formulations?



Precipitation, Surface Insolation, and Clouds
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~» Precipitation and surface
insolation are related via

clouds.
» Calculations of these three ST
fields are among the most V’
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today's climate models. '0, "
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» From above, it is expected:

1. Precipitation biases are
positively correlated
with cloudiness biases,

2. Surface insolation biases
are negatively
correlated with
precipitation and
cloudiness biases.
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» Examine this hypothesis in the
NARCCAP experiment.
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Biases in Annual-mean precipitation, Cloudiness, and Insolation
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*  Model biases show regionally systematic variations. E.g.,
— Wet/Dry biases in the western US/Gulf of Mexico
— Overall negative cloudiness biases in the US (Less —'ve or +'ve biases in WUS)

— General +'ve biases in insolation except in the Pacific NW (Less —'ve or +'ve
biases in EUS/Gulf of Mexico)

« The relationship between the three bias fields are not clear.



Biases in Precipitation, Cloudiness, and Insolatioy

— Model [ PR (mm/day) | Cloudiness (%) | Insolation (W/m2)
CRCM 0.33 -11.0 10.1
5 | HRM3 -0.08 -5.6 10.6
> [ RCM3 -0.54 2.7 -28.7
< | WRFG -0.09 -12.4 30.6
ENS 0.18 6.6 5.6
CRCM 0.60 -12.8 10.7
u | HRM3 0.22 -5.7 -43.5
£ | RCM3 0.96 5.5 -26.7
“ | WRFG 0.23 -12.9 35.6
ENS 0.50 6.5 -6.0
CRCM 0.45 -11.7 29.9
5 | HRM3 -0.18 -7.9 31.0
£ [rem3 0.62 -7.4 -28.1
@ | WRFG -0.44 -16.9 49.6
ENS 0.11 -11.0 20.6
CRCM ~0.04 ~6.9 3.9
HRM3 -0.51 -3.9 66.6
< | RCM3 0.01 3.1 -32.9
WRFG -0.34 -11.9 23.5
ENS -0.22 -5,1 15.2
CRCM 0.32 -12.6 -3.8
< | HRM3 0.16 -5.1 -11.6
£ | rom3 0.57 8.8 -27.0
2 [wRrrG 0.16 -8.0 14.3
ENS 0.31 -4.3 -7.0
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The expected relationship
between the biases in
precipitation, cloudiness,
and insolation does not
exist for the land-mean
biases.



Biases in Annual-mean precipitation, Cloudiness, and Insolation
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« Spatial anomalies of model biases show noticeable patterns

— Most RCMS show positive/negative precipitation bias anomalies in WUS/EUS,
most notably in the Pacific NW/Gulf of Mexico-Atlantic coast regions.

— Insolation bias anomalies matches with those in precipitation (opposite signs).
— Cloudiness bias anomalies are similar to those in precipitation (same signs).



Relationship between the biases in Pr, Cloudiness, and Insolation for the ENS
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Fall (SON)
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Winter (DJF)
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Annual Mean
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« The bias anomalies of multi-model ensemble shows consistent relationship between
precipitation, insolation, and cloudiness for season totals as well as annual totals.

— Positive correlation: PR vs. Cloudiness

— Negative correlation: PR vs. Insolation & Cloudiness vs. Insolation

« The strongest correlation between cloudiness and surface insolatfion; the weakest for
precipitation and cloudiness.
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Model PR vs. PR vs. Cloudiness vs.
Cloudiness Insolation Insolation
CRCM 0.24 -0.48 -0.46
&5 [ HRM3 0.29 -0.30 -0.51
> [ RcM3 0.47 -0.49 -0.64
< | WRFG 0.36 -0.22 -0.60
ENS 0.36 -0.48 -0.66
CRCM 0.30 -0.43 -0.45
an [ HRIM3 0.36 -0.43 -0.49
£ | RCM3 0.59 -0.52 -0.75
v | HRFG 0.39 -0.26 -0.75
ENS 0.39 -0.53 -0.59
CRCM 0.42 -0.35 -0.58
& | HRM3 0.00 -0.33 0.03
£ [rom3 0.59 ~0..07 ~0.22
& |LWRFG 0.22 -0.14 -0.56
ENS 0.38 -0.32 -0.34
CRCM -0.06 -0.34 -0.50
HRM3 0.40 -0.36 -0.58
T | RCM3 0.53 -0.61 -0.57
WRFG 0.40 -0.40 -0.44
ENS 0.36 -0.37 -0.79
CRCM 0.08 -0.28 -0.72
& | HRM3 0.27 -0.35 -0.75
£ | RcM3 0.37 -0.49 -0.82
= | WRFG 0.38 -0.41 -0.79
ENS 0.28 -0.41 -0.89

Biases in Precipitation, Cloudiness, and Insolation/

The relationship between
the spatial anomalies of
model biases in PR,
Cloudiness, and Insolation
are consistent for nearly all
models and seasons.



Uncertainties due to the Choice of the Reference Dataset(s)

All reference datasets, typically from observations and assimilations,
contain their own errors.

Errors in the reference datasets are typically not well quantified.

Uncertainty in reference data against which model results are compared
can alter model evaluation results.



Evaluation of Spatial Variability using Multiple Reference Data
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Individual observations as well as models are 'evaluated' against the multi-
observation ensemble.

The evaluation metrics of multiple observation datasets vary noticeably
although they are much smaller than those of models.

Measured models can vary systematically according to the selection of
reference data as shown for the cloudiness in the CORDEX-Africa domain.



Summary T
R e e e
Evatgation of climate models is a fundamental stepin model improvements
as well as in projecting future climate and climate change impacts

assessments.

JPL/NASA is developing RCMES to facilitate climate model evaluation
e A number of observed and remote sensing data have been collected

Evaluation of the RCM data in the two independent regional climate
hindcast experiments for Africa and North America shows that model errors
vary systematically according to regions, seasons, variables, and metrics in
addition to models.

The multi-model ensembile is typically among the best performer in all
evaluations.

Relationship between the biases in related model variables may be useful in
diagnosing model parameterizations of related processes.

Evaluation results can vary, often substantially, according to the selection of
the reference data.



